Hermes
Loading...
Searching...
No Matches
utils.h
1/*
2 * Copyright (c) 2017 FilipeCN
3 *
4 * The MIT License (MIT)
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21 * THE SOFTWARE.
22 *
23 */
24
25#ifndef HERMES_GEOMETRY_UTILS_H
26#define HERMES_GEOMETRY_UTILS_H
27
30
31namespace hermes::coordinate_systems {
32
40vec3f sphericalDirection(real_t sinTheta, real_t cosTheta, real_t phi);
51vec3f sphericalDirection(real_t sinTheta, real_t cosTheta, real_t phi,
52 const vec3f &x, const vec3f &y,
53 const vec3f &z);
57real_t sphericalTheta(const vec3f &v);
61real_t sphericalPhi(const vec3f &v);
62/* local coordinate system
63 * @v1 base vector
64 * @v2 receives the second axis
65 * @v3 receives the third axis
66 *
67 * Construct a local coordinate system given only a single vector.
68 *
69 * Assumes that **v1** is already normalized.
70 */
71inline void makeCoordinateSystem(const vec3 &v1, vec3 *v2, vec3 *v3) {
72 if (fabsf(v1.x) > fabsf(v1.y)) {
73 float invLen = 1.f / sqrtf(v1.x * v1.x + v1.z * v1.z);
74 *v2 = vec3(-v1.z * invLen, 0.f, v1.x * invLen);
75 } else {
76 float invLen = 1.f / sqrtf(v1.y * v1.y + v1.z * v1.z);
77 *v2 = vec3(0.f, v1.z * invLen, -v1.y * invLen);
78 }
79 *v3 = cross(v1, *v2);
80}
81/* spherical coordinate
82 * @w **[in]** vector
83 * In spherical coordinates **(theta, phi)**. **Theta** is the given direction
84 * to the z axis and **phi** is the angle formed with the x axis after
85 * projection onto the **xy** plane.
86 * @return cosine of **theta**
87 */
88inline float cosTheta(const vec3 &w) { return w.z; }
89/* spherical coordinate
90 * @w **[in]** vector
91 * In spherical coordinates **(theta, phi)**. **Theta** is the given direction
92 * to the z axis and **phi** is the angle formed with the x axis after
93 * projection onto the **xy** plane.
94 * @return absolute value of cosine of **theta**
95 */
96inline float absCosTheta(const vec3 &w) { return fabs(w.z); }
97/* spherical coordinate
98 * @w **[in]** vector
99 * In spherical coordinates **(theta, phi)**. **Theta** is the given direction
100 * to the z axis and **phi** is the angle formed with the x axis after
101 * projection onto the **xy** plane.
102 * @return squared sine of **theta**
103 */
104inline float sinTheta2(const vec3 &w) {
105 return std::max(0.f, 1.f - cosTheta(w) * cosTheta(w));
106}
107/* spherical coordinate
108 * @w **[in]** vector
109 * In spherical coordinates **(theta, phi)**. **Theta** is the given direction
110 * to the z axis and **phi** is the angle formed with the x axis after
111 * projection onto the **xy** plane.
112 * @return sine of **theta**
113 */
114inline float sinTheta(const vec3 &w) { return sqrtf(sinTheta2(w)); }
115/* spherical coordinate
116 * @w **[in]** vector
117 * In spherical coordinates **(theta, phi)**. **Theta** is the given direction
118 * to the z axis and **phi** is the angle formed with the x axis after
119 * projection onto the **xy** plane.
120 * @return cosine of **phi**
121 */
122inline float cosPhi(const vec3 &w) {
123 float sintheta = sinTheta(w);
124 if (sintheta == 0.f)
125 return 1.f;
126 return Numbers::clamp(w.x / sintheta, -1.f, 1.f);
127}
128/* spherical coordinate
129 * @w **[in]** vector
130 * In spherical coordinates **(theta, phi)**. **Theta** is the given direction
131 * to the z axis and **phi** is the angle formed with the x axis after
132 * projection onto the **xy** plane.
133 * @return sine of **phi**
134 */
135inline float sinPhi(const vec3 &w) {
136 float sintheta = sinTheta(w);
137 if (sintheta == 0.f)
138 return 0.f;
139 return Numbers::clamp(w.z / sintheta, -1.f, 1.f);
140}
141/* spherical coordinate
142 * @w **[in]** vector
143 * @return flipped z coordinate
144 */
145inline vec3 otherHemisphere(const vec3 &w) { return vec3(w.x, w.y, -w.z); }
146} // namespace hermes
147
148#endif // HERMES_GEOMETRY_UTILS_H
float real_t
default floating point type
Definition defs.h:75
Number functions.
static HERMES_DEVICE_CALLABLE T clamp(const T &n, const T &l, const T &u)
Clamps value to closed interval.
Definition numeric.h:176
Geometric vector classes.
HERMES_DEVICE_CALLABLE T cross(const Vector2< T > &a, const Vector2< T > &b)
Computes the cross product between two vectors.
Definition vector.h:550