Hermes
Loading...
Searching...
No Matches
sphere.h
1/*
2 * Copyright (c) 2017 FilipeCN
3 *
4 * The MIT License (MIT)
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21 * THE SOFTWARE.
22 *
23 */
24
25#ifndef HERMES_GEOMETRY_SPHERE_H
26#define HERMES_GEOMETRY_SPHERE_H
27
28#include <hermes/geometry/parametric_surface.h>
29#include <hermes/geometry/shape.h>
31
32namespace hermes {
33
34class Circle : public Shape {
35public:
36 Circle() { r = 0; }
37 Circle(point2 center, real_t radius) : c(center), r(radius) {
38 this->type = ShapeType::SPHERE;
39 }
40 virtual ~Circle() {}
41
42 point2 c;
43 real_t r;
44};
45
47public:
48 ParametricCircle() { r = 0.f; }
49 ParametricCircle(point2 center, real_t radius) : Circle(center, radius) {}
54 point2 operator()(real_t t) const override {
55 real_t angle = t * Constants::two_pi;
56 return this->c + this->r * vec2(cosf(angle), sinf(angle));
57 }
58};
59
61public:
62 ImplicitCircle() : r(0.f) {}
63
64 ImplicitCircle(point2 center, real_t radius) : c(center), r(radius) {}
66
67 point2 closestPoint(const point2 &p) const override {
68 return c + r * vec2(this->closestNormal(p));
69 }
70 normal2 closestNormal(const point2 &p) const override {
71 if (c == p)
72 return normal2(1, 0);
73 vec2 n = normalize(c - p);
74 return normal2(n.x, n.y);
75 }
76 bbox2 boundingBox() const override { return bbox2(c - r, c + r); }
77 void closestIntersection(const Ray2 &r,
78 CurveRayIntersection *i) const override {
81 }
82 double signedDistance(const point2 &p) const override {
83 return distance(c, p) - r;
84 }
85
86 point2 c;
87 real_t r;
88};
89
90class Sphere : public SurfaceInterface {
91public:
92 Sphere() : r(0.f) {}
93
94 Sphere(point3 center, real_t radius) : c(center), r(radius) {}
95 virtual ~Sphere() {}
96
97 point3 closestPoint(const point3 &p) const override {
98 return c + r * vec3(this->closestNormal(p));
99 }
100 normal3 closestNormal(const point3 &p) const override {
101 if (c == p)
102 return normal3(1, 0, 0);
103 vec3 n = normalize(c - p);
104 return normal3(n.x, n.y, n.z);
105 }
106 bbox3 boundingBox() const override { return bbox3(c - r, c + r); }
107 void closestIntersection(const Ray3 &r,
108 SurfaceRayIntersection *i) const override {
111 }
112 point3 c;
113 real_t r;
114};
115
117public:
118 ImplicitSphere() : r(0.f) {}
119
120 ImplicitSphere(point3 center, real_t radius) : c(center), r(radius) {}
121 ~ImplicitSphere() {}
122
123 point3 closestPoint(const point3 &p) const override {
124 return c + r * vec3(this->closestNormal(p));
125 }
126 normal3 closestNormal(const point3 &p) const override {
127 if (c == p)
128 return normal3(1, 0, 0);
129 vec3 n = normalize(c - p);
130 return normal3(n.x, n.y, n.z);
131 }
132 bbox3 boundingBox() const override { return bbox3(c - r, c + r); }
133 void closestIntersection(const Ray3 &r,
134 SurfaceRayIntersection *i) const override {
137 }
138 double signedDistance(const point3 &p) const override {
139 return distance(c, p) - r;
140 }
141
142 point3 c;
143 real_t r;
144};
145
146inline bbox2 compute_bbox(const Circle &po, const Transform2 *t = nullptr) {
147 bbox2 b;
148 hermes::point2 center = po.c;
149 if (t != nullptr) {
150 b = make_union(b, (*t)(center + hermes::vec2(po.r, 0)));
151 b = make_union(b, (*t)(center + hermes::vec2(-po.r, 0)));
152 b = make_union(b, (*t)(center + hermes::vec2(0, po.r)));
153 b = make_union(b, (*t)(center + hermes::vec2(0, -po.r)));
154 } else {
155 b = make_union(b, center + hermes::vec2(po.r, 0));
156 b = make_union(b, center + hermes::vec2(-po.r, 0));
157 b = make_union(b, center + hermes::vec2(0, po.r));
158 b = make_union(b, center + hermes::vec2(0, -po.r));
159 }
160 return b;
161}
162
163} // namespace hermes
164
165#endif
Definition bbox.h:84
Definition bbox.h:187
Definition sphere.h:34
Definition sphere.h:60
Definition surface.h:59
Definition sphere.h:116
Definition surface.h:92
Definition sphere.h:46
point2 operator()(real_t t) const override
Definition sphere.h:54
Definition parametric_surface.h:34
Definition ray.h:39
Definition ray.h:70
Definition shape.h:32
Definition sphere.h:90
Definition surface.h:73
Represents a 2-dimensional transformation.
Definition transform.h:90
#define HERMES_UNUSED_VARIABLE(x)
Specifies that variable is not used in this scope.
Definition debug.h:62
float real_t
default floating point type
Definition defs.h:75
HERMES_DEVICE_CALLABLE Normal3< T > normalize(const Normal3< T > &normal)
Computes normalized copy.
Definition normal.h:201
HERMES_DEVICE_CALLABLE real_t distance(const Point2< T > &a, const Point2< T > &b)
Computes the Euclidean distance between two points.
Definition point.h:295
Definition surface.h:33
Holds 2-dimensional integer index coordinates.
Definition index.h:50
Definition surface.h:66
Geometric transform classes.