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Abstract—We present an adaptive method for computing a
robust polygonal approximation of an implicit curve in the plane
that uses affine arithmetic to identify regions where the curve
lies inside a thin strip. Unlike other interval methods, even those
based on affine arithmetic, our method works on triangulations,
not only on rectangular quadtrees.
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I. INTRODUCTION

Several interval methods have been proposed for robustly
approximating an implicit curve given on the plane by an
equation f (x,y) = 0. These methods typically use a rectangular
quadtree to explore a region of interest recursively and
adaptively, using interval estimates for the values of f (and
sometimes of its gradient) on a rectangular cell as a quadtree
subdivision criterion. Some methods have used affine arithmetic
(AA) [1] to improve the convergence of the quadtree but none
has exploited the additional geometric information provided by
AA and none has worked on triangulations. While all interval
methods can compute interval estimates on rectangular cells,
classical interval arithmetic cannot handle triangles naturally.

In this paper, we describe an interval method for adaptively
approximating an implicit curve on a refinable triangular
decomposition of the region of interest using the geometric
information provided by AA as a flatness criterion to stop the
recursion. Fig. 1 shows an example of our method in action.
Note how the decomposition is more refined around regions
of higher curvature in the implicit curve.

After briefly reviewing some of the related work in Section II,
we recall the main concepts in AA in Section III and explain
how AA can work on triangular domains and how to extract
geometric estimates for the location of the curve in the form
of a strip in Section IV. This is the basis of an adaptive
method that can be used on triangulations, which we present
in Section V. We discuss some examples in Section VI and we
report our conclusions and suggest directions for future work
in Section VII.

II. RELATED WORK

Dobkin et al. [2] described in detail a continuation method
for polygonal approximation of implicit curves in regular
triangular grids generated by reflections. Since the grid is
regular, their approximation is not adaptive. The selection of
the grid resolution is left to the user. Persiano et al. [3] presented
a general scheme for adaptive triangulation refinements which

(a) Input mesh
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Fig. 1. Our method in action for the pear curve given by 4y4 = (x+1)3(1−x)
on an unstructured triangle mesh: (a) input coarse mesh and (b) adaptively
refined mesh and polygonal approximation (red) computed by our method.

they applied to polygonal approximation of implicit curves in
triangular grids.

Suffern and Fackerell [4] were probably the first to apply
interval methods for plotting implicit curves using quadtrees.
Mitchell [5] revisited their work and helped to spread the word
on interval methods for computer graphics. Lopes et al. [6]
presented an interval method for polygonal approximation of
implicit curves that uses interval estimates of the gradient for
finding approximations that are both spatially and geometrically
adaptive, in the sense that it uses larger cells when the curve is
approximately flat. Their method is in the same spirit as ours,
except that they did not use or exploit AA and worked only
with rectangular quadtrees.

Comba and Stolfi [7] introduced AA and showed an example
of how it can perform better than classical interval arithmetic
when plotting implicit curves. Martin et al. [8] compared the
performance of several interval methods for plotting algebraic



curves using quadtrees, including methods based on AA.
Neither paper exploited the geometric information given by
AA. This has been done for ray tracing implicit surfaces by
Cusatis et al. [9] and for approximating parametric curves by
Figueiredo et al. [10], but as far as we know has not yet been
done for polygonal approximation of implicit curves.

Bühler [11], [12] proposed a reliable cell pruning method
based on a linearization of implicit objects derived from AA.
In addition to reducing the number of enclosure cells, this
method provides a tight piecewise linear covering adapted to the
topology of the object instead of a covering using overestimated
axis-aligned bounding boxes. This approach is in the same
spirit as our own, but it uses rectangular cells only and can
generate approximations with cracks across cells.

III. AFFINE ARITHMETIC

In this section, we briefly recall the main concepts in AA.
For details, see [1].

In AA, a real quantity z is represented by an affine form:

ẑ = z0 + z1ε1 + z2ε2 + · · ·+ znεn

where zi are real numbers and εi are noise symbols which vary
in [−1,1] and represent independent sources of uncertainty.
From this representation, one deduces an interval estimate for
the value of z:

z ∈ [ẑ] := [z0−δ ,z0 +δ ]

where δ = |z1|+ · · ·+ |zn|. More importantly, by design affine
forms can share noise symbols and thus may be not completely
independent. Quadratic convergence and the explicit represen-
tation of first-order partial correlations are the main features
of AA, which are absent in classical interval arithmetic [13].
These features allow more efficient methods in several cases,
especially when the geometry of AA approximations is
exploited [9], [10].

There are simple formulas for operating with affine forms.
The formulas for affine operations (addition, subtraction, scalar
multiplication, and scalar translation) are immediate, because
affine forms represent these operations exactly (except for
rounding errors in floating-point arithmetic). The formulas for
non-affine operations (multiplication, integer powers, square
root, and other elementary functions) rely on a good affine
approximation with an explicit error term, as explained in
detail elsewhere [1], [14]. By combining the formulas for
these basic operations, one can evaluate any complicated
formula on affine forms. As in other extended arithmetics,
this is especially convenient to implement automatically using
operator overloading.

IV. BOUNDING IMPLICIT CURVES WITH STRIPS

Affine forms have a rich geometry. We shall now describe
how to use AA to compute a strip of parallel lines that contains
the piece of the curve given implicitly by f (x,y) = 0 in axis-
aligned rectangles, arbitrary parallelograms, and triangles. This
computation is the basis of our adaptive approximation method,
which we shall present in Section V.

A. On rectangles

In the simplest setting, we have a rectangular domain Ω =
[a,b]× [c,d]. Assuming that f is given by a mathematical
expression in x and y, all we need to do to evaluate f in AA
is to represent x and y with appropriate affine forms:

x̂ = x0 + x1ε1, x0 =
a+b

2
, x1 =

b−a
2

ŷ = y0 + y2ε2, y0 =
c+d

2
, y2 =

d− c
2

Note that x and y use different noise symbols because they
vary independently in Ω.

The result of evaluating f on Ω using AA is an affine form

f̂ = f0 + f1ε1 + f2ε2 + · · ·+ fnεn

where ε3, . . ., εn are noise symbols created during the evaluation
of non-affine operations that occur in the expression of f ,
including rounding in floating-point arithmetic. A first-order
approximation to the value of f on Ω is given by the principal
terms f0 + f1ε1 + f2ε2, which directly relate f (x,y) with the
input variables x and y. The other terms are second-order
terms and can be condensed into a single term f3ε3, where
f3 = | f3|+ · · ·+ | fn|. (For simplicity, we have reused ε3 and f3
here.) In summary, the value of f on Ω is represented by an
affine form with three noise symbols:

f̂ = f0 + f1ε1 + f2ε2 + f3ε3

In particular, for each (x,y) ∈ Ω, the value f (x,y) is in the
interval [ f̂ ]. If this interval does not contain 0, then the curve
does not pass through Ω. This test, called an absence oracle by
Lopes et al. [6], is the basis for all previous interval methods for
approximating an implicit curve using a rectangular quadtree.

The basis of our approach is that important geometric bounds
can be extracted from the affine form f̂ . Indeed, the affine
approximation f̂ says that the graph of z = f (x,y) over Ω is
sandwiched between the two parallel planes

z = f0 + f1ε1 + f2ε2 ± f3

which can be written in cartesian coordinates as

z = f0 +
f1

x1
(x− x0)+

f2

y2
(y− y0) ± f3

by writing
ε1 =

x− x0

x1
, ε2 =

y− y0

y2

The region where f is zero in Ω is thus contained in the strip
defined by the two parallel lines

0 = f0 +
f1

x1
(x− x0)+

f2

y2
(y− y0) ± f3

whose width is
w =

2 f3√( f1
x1

)2
+
( f2

y2

)2

When w is small, the curve f (x,y) = 0 varies little inside Ω.
Our method uses this test as a subdivision criterion for an
adaptive exploration of Ω: keep subdividing until w is small.



(a) Bicorn curve (b) Cubic curve (c) Clown smile curve (d) Taubin’s quartic curve

Fig. 2. Approximating implicit curves (red) on quadtrees using the method of Lopes et al. [6] (top) and our method (bottom): (a) bicorn: y2(0.752− x2) =
(x2+1.5y−0.752)2 on Ω= [−1.1,1.1]2, (b) ) cubic: y2−x3+x= 0.5 on Ω= [−5.21,5.21]2, (c) clown smile: (y−x2+1)4+(x2+y2)4 = 1 on Ω= [−1.21,1.21]2
and quartic curve from Taubin’s paper [15] on Ω = [−2.19,2.19]2.

TABLE I
PERFORMANCE AND STATISTICS FOR THE CURVES IN FIG. 2 (TIMES IN MILLISECS).

Fig. curve error depth IA AA
gradient tol. #cells visited #leaves time width tol. #cells visited #leaves time

2.a bicorn 10−3 8 0.80 605 124 11 0.03 461 98 9
2.b cubic 10−2 8 0.35 805 144 7 0.05 317 100 5
2.c clown smile 10−2 8 0.50 677 162 15 0.05 373 114 12
2.d Taubin’s quartic 10−3 9 0.99 6937 341 394 0.05 1697 221 139

Fig. 3. Approximating a curve with strips computed by AA in rectangles.

Fig. 3 illustrates the approximation of an implicit curve with
strips computed by AA in rectangles. Fig. 2 shows an example
of the whole method in action. As mentioned in Section II
and illustrated in Table I, our method compares favorably with
the method of Lopes et al. [6] without having to compute
derivatives because AA provides second-order approximations.

B. On parallelograms

We have seen how to represent an axis-aligned rectangle
in AA. In fact, the objects that AA represents naturally are
zonotopes: centrally symmetric convex polytopes, or equiva-
lently, Minkowski sums of line segments. In particular, with
two noise symbols AA can represent an arbitrary parallelogram.
Indeed, the two affine forms

x̂ = x0 + x1ε1 + x2ε2, ŷ = y0 + y1ε1 + y2ε2

represent the parallelogram centered at (x0,y0) with sides
parallel to v1 = (x1,y1) and v2 = (x2,y2) of twice their length.
Note that now x and y are not completely independent, unless
x2 = 0 and y1 = 0, when the parallelogram is then a rectangle
with sides parallel to the coordinate axes.

Having represented a parallelogram P with two affine forms
x̂ and ŷ, we can compute an affine form f̂ representing f in P
using AA on x̂ and ŷ and from f̂ find cartesian equations for
a strip containing the curve f (x,y) = 0 for (x,y) ∈ P. As seen
above, in the rectangular case these equations were easy to find
by writing ε1 and ε2 in terms of x and y. We can do exactly
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Fig. 4. Polygonal approximation of the parabola y = 3x2 using our method. (a) Input triangle. (b), (c), and (d) evaluating f (x,y) = 3x2− y with AA in each
parallelogram and its associated strips (gray regions). (e) computing the polygonal approximation (red) using the sub-triangles of the input triangle.

the same thing in the parallelogram case, but now we need to
invert a 2×2 matrix, converting[

x
y

]
=

[
x0
y0

]
+

[
x1 x2
y1 y2

]
·
[

ε1
ε2

]
to [

ε1
ε2

]
=

[
x1 x2
y1 y2

]−1

·
[

x− x0
y− y0

]
and proceeding as before. The matrix above is invertible if and
only if the vectors v1 and v2 are linearly independently, that
is, when the parallelogram is not degenerate.

C. On triangles

Triangles are not zonotopes and so cannot be directly
represented in AA. The easiest solution is to include a given
triangle into a parallelogram and then evaluate AA there.
As shown in Fig. 5, there are a few ways to do this, but
conceptually this is wrong because we would be evaluating f
outside its domain. Although this would work for functions
defined on the whole plane, it does not work for smaller
domains or surfaces.

Nevertheless, as shown in Fig. 6, it is easy to decompose a
triangle into three overlapping parallelograms by joining the
midpoints of the edges. We can then evaluate f with AA on
each of these parallelograms. If the curve lies within a thin
strip in each of these, then the curve lies within a thin “tube”
inside the triangle, even if the curve does not lie within a single
thin strip in the triangle. Fig. 4 illustrates this.

Fig. 5. Including a triangle into a parallelogram.

Fig. 6. Decomposing a triangle into parallelograms.

V. OUR ADAPTIVE METHOD

Once we know how to decide whether an implicit curve can
be well approximated by a strip or a series of strips inside a
cell (be it a rectangle, a parallelogram, or a triangle), we can
use this test as a refinement criterion for adaptive subdivision:
if the curve is well approximated inside the cell then we stop
the subdivision; otherwise, we decompose the current cell into
a number of subcells and recursively explore each subcell. We
get a quadtree decomposition by subdividing the cell into four
similar subcells by joining the midpoints of the edges of the
cell. This is the easiest subdivision method.

Triangulations can offer us other subdivision methods. Our
adaptive method does not care what subdivision method is used
and can use whatever subdivision method is offered by the
triangulation. In particular, our method can work seamlessly
with dyadic splits, 4-8 meshes [16],

√
3-subdivision [17],

and other subdivision schemes, and with adaptive finite-
element meshes, whose subdivision depends on the results
of numerical simulations. If the triangulation does not offer its
own subdivision method, then we use the standard triangular
quadtree subdivision described above.

As usual, the recursion stops when the curve does not cross
the cell (as proved by the interval estimate [ f̂ ] not containing
zero) or when the curve lies within a thin tube inside the cell,
of width less than a user-supplied tolerance ε . In this case, we
compute a polygonal approximation for the curve by finding
the points where the curve crosses the boundary of the cell. In
the case of triangular cells, we also find the points where the
curve crosses the boundary of each subcell of the midpoint
subdivision (regardless of the subdivision scheme used by the
triangulation), since theses are the edges of the parallelograms
used for testing the cell (see Fig. 4). As in the method of
Lopes et al. [6], we use the bisection method to full precision
on each edge for finding these crossings to ensure continuity
of the polygonal approximation (see Fig. 7).

Our method is summarized in Fig. 8, in two versions:
one for parallelograms, including rectangles, and one for
triangles. The method starts by exploring each cell in an
initial mesh decomposition of the region of interest. For
rectangular quadtrees, this mesh typically contains a single cell.
The Approximate procedure, which finds the actual polygonal
approximation inside the cell, is the one described above.



Fig. 7. Linear interpolation (left) produces cracks in the approximation,
which are avoided by using the bisection method to full precision (right).

procedure Adaptive()
for all cells C in the base mesh do

Explore(C)
end

end

procedure Explore(C) (parallelograms)
f̂ ← f (C) with AA
if 0 ∈ [ f̂ ] then

w← width of f̂ in C
if w≤ ε then

Approximate(C)
else

divide C into subcells Ci
for each i, Explore(Ci)

end
end

end

procedure Explore(C) (triangles)
P1,P2,P3← parallelograms of C
f̂i← f (Pi) with AA
if 0 ∈ [ f̂i] for some i then

wi← width of f̂ in Pi
if wi ≤ ε for all i then

Approximate(C)
else

divide C into subcells Ci
for each i, Explore(Ci)

end
end

end

Fig. 8. Our method summarized.

VI. RESULTS

Fig. 11 shows that our method is able to approximate an
implicit curve on an unordered collection of triangles (i.e., a
triangle soup) as well as on a triangle mesh with topology
information, i.e., triangle mesh with connectivity between the
triangles. We used midpoint refinement in the first example
and 4-8 mesh refinement in the second one.

TABLE II
PERFORMANCE AND STATISTICS FOR OUR METHOD (TIMES IN MILLISECS).

Fig. curve mesh depth ε
triangles timein out

1 pear beetle 4 1×10−2 940 1771 280
9.a Taubin square 5 1×100 8 389 109
9.b Taubin square 6 1×10−1 8 1466 401
9.c Taubin square 6 1×10−2 8 2736 537
11.b circle Africa 3 1×10−3 193 922 33
11.c circle Africa 5 1×10−3 193 1106 59
12.a bicorn octagon 5 5×10−3 126 1168 123
12.b cubic aircraft 3 5×10−3 3530 4142 333
12.c capricorn tree 22 1×10−3 1015 11678 8016
13 Pisces circle 6 5×10−3 101 2382 1124
14.a heart gear 3 3×10−3 1424 3289 547
14.b clown K7 4 5×10−3 1006 2134 391
14.c irrational eight 4 1×10−3 1032 3897 454

Fig. 12 shows that our method is able to approximate implicit
curves on both convex and non-convex 4-8 meshes. Note how
our method tracks the main features of the curves, such as
singularities and multiple components. Fig. 14 shows that our
method approximates nicely both algebraic and non-algebraic
curves on complex meshes.

Fig. 9 illustrates the effect of the geometric criteria in our
method. This strategy produces well adapted curves controlled
by the tolerance ε (see Table II), the only user-supplied
parameter of our method. Moreover, Fig. 9 shows how the
mesh concentrates on high-curvature regions as we increase ε .

Fig. 13 shows that our method adapts to the topology of the
curve using a small set of triangles. This adaptability cannot
be accomplished directly by the marching triangles algorithm.
Indeed, the correct topology is reproduced by the marching
triangles algorithm only after substantially refining the mesh,
which significantly increases the number of triangles.

All results were generated on a 1.83GHz Intel Core 2 Duo
with 3GB of RAM. Table II shows performance data, timings,
and statistics for these computations.

VII. CONCLUSION

Like the method of Lopes et al. [6], our method computes
polygonal approximations of implicit curves that are both spa-
tially and geometrically adaptive. Unlike their method, however,
our method does not need to compute derivatives because AA
provides second-order approximations. Moreover, our method
works for rectangular and triangular decompositions, both
structured and unstructured, can use any refinement scheme that
the decompositions offer, and can provide its own refinement
scheme otherwise.

One limitation of our method is that its results may depend
on the quality of the initial decomposition, unless the mesh
provides a refinement scheme that avoids bad-quality triangles.

By replacing matrix inverses with pseudo-inverses, we can
extend the computation of Section IV to triangles in 3D space
and so extend the method to approximating implicit curves on
triangulated surfaces. Work along this line is already underway.
Fig. 10 shows a preliminary result in this direction.



(a) ε = 1 (b) ε = 0.1 (c) ε = 0.01

Fig. 9. The effect of the geometric criteria on the Taubin’s curve in a triangular quadtree. Our method tracks regions with high curvature when ε increases.

Fig. 10. Approximating an implicit curve on a triangulated surface: input
bitorus mesh and the sphere x2 +y2 + z2 = 1 (left) and the implicit curve (red)
given by the restriction of x2 + y2 + z2 = 1 on bitorus (right).

Another natural direction for future work is to extend our
technique for approximating implicit surfaces in tetrahedral
spatial decompositions.
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(a) Input mesh (b) Triangle soup (c) Triangle mesh with topology

Fig. 11. Approximating the circle (red curve) x2 +y2 = 1 on adaptive meshes: (a) input coarse mesh, (b) each triangle of the triangle-soup is divided into four
sub-triangles, adding new vertices in the midpoints of each edge and (c) using 4-8 mesh refinement.

(a) (b) (c)

Fig. 12. Approximating implicit curves (red) on adaptive triangle meshes using 4-8 mesh refinement, input coarse mesh (top) and refined mesh (bottom): (a) bicorn
curve on octagon model, (b) cubic curve y2 = x3 + x on aircraft model and (c) the capricornoid curve given implicitly by 4x2(x2 + y2)− (2y− x2− y2)2 = 0 on
tree model.



Fig. 13. In order to reproduce the Pisces logo (http://www.geom.umn.edu/~fjw/pisces/), the marching triangles algorithm alone generates a curve with wrong topology
on coarse mesh (left) with 101 triangles and it just provides a satisfactory result on fine mesh with 12928 triangles after a refinement process (middle). While the adaptivity of our
method tracks the geometry and topology of the curve on the mesh with 2382 triangles.

(a) (b) (c)

Fig. 14. Approximating implicit curves on complex meshes, input coarse mesh (top) and adaptive mesh (bottom): (a) the heart curve (x2 +y2−1)3 = x2y3 on
gear model, (b) clown smile on K7 model, and (c) the transcendental curve given implicitly by (xy+ cos(x+ y))(xy+ sin(x+ y)) = 0 on eight model.

 http://www.geom.umn.edu/~fjw/pisces/
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