
Approximating implicit curves on plane and surface triangulations with affine arithmetic

Filipe de Carvalho Nascimentoa, Afonso Paivaa, Luiz Henrique de Figueiredob, Jorge Stolfic

aInstituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, Brazil
bInstituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Brazil

cInstituto de Computação, Universidade Estadual de Campinas, Campinas, Brazil

Abstract

We present a spatially and geometrically adaptive method for computing a robust polygonal approximation of an implicit curve
defined on a planar region or on a triangulated surface. Our method uses affine arithmetic to identify regions where the curve lies
inside a thin strip. Unlike other interval methods, even those based on affine arithmetic, our method works on both rectangular and
triangular decompositions and can use any refinement scheme that the decomposition offers.

Keywords: implicit curves, polygonal approximation, interval methods.

1. Introduction

The numerical solution of systems of non-linear equations
in several variables is a key tool in geometric modeling and
computer-aided geometric design [1]. In many applications,
such as surface intersection and offset computation, the solution
is not a set of isolated points but rather a curve or a surface. The
simplest case is the solution of an equation f (x,y) = 0, which
gives an implicit curve on the plane.

Computing a polygonal approximation of an implicit curve
is a challenging problem because it is difficult to find points on
the curve and also because the curve may have several connected
components. Therefore, robust approximation algorithms must
explore the whole region of interest to avoid missing any com-
ponents of the curve. One approach for achieving robustness
is to use interval methods [2, 3], which are able to probe the
behavior of a function over whole regions instead of relying
on point sampling. Interval methods lead naturally to spatially
adaptive solutions that concentrate efforts near the curve.

Several interval methods have been proposed for robustly
approximating an implicit curve on the plane (see §2). These
methods explore a rectangular region of interest by decomposing
it recursively and adaptively with a quadtree and using interval
estimates for the values of f (and sometimes of its gradient) on
a cell as a subdivision criterion.

Affine arithmetic (AA) [4] is a generalization of classical
interval arithmetic that explicitly represents first-order partial
correlations, which can improve the convergence of interval
estimates. Some methods have used AA for approximating
implicit curves, successfully exhibiting improved convergence,
but none has exploited the additional geometric information
provided by AA and none has worked on triangulations. Indeed,
while all interval methods can compute interval estimates on
rectangular cells, classical interval arithmetic cannot handle
triangles naturally, except by enclosing them in axis-aligned
rectangles. Thus, existing interval methods are restricted to
rectangular regions. Moreover, to handle implicit curves on

triangulated surfaces, these methods would have to use a 3d axis-
aligned box containing each triangle, which is wasteful.

In this paper, we describe an interval method for adaptively
approximating an implicit curve on a refinable triangular decom-
position of the region of interest. Our method uses the geometric
information provided by AA as a flatness criterion to stop the
recursion and is thus both spatially and geometrically adaptive
in the sense of Lopes et al. [5]. Our method can handle implicit
curves given by algebraic or transcendental formulas, works on
triangulated plane regions and surfaces of arbitrary genus, and
can use any mesh refinement scheme. Fig. 1 shows an example
of our method in action on a triangulated surface. Note how the
mesh is refined near the implicit curve.

After briefly reviewing some of the related work in §2 and
the main concepts of AA in §3, we explain in detail in §4 how
to use AA to extract geometric estimates in the form of strips
for the location of the curve in a triangle. This is the basis of
an interval method that can be used on triangulations, both on
the plane and on surfaces, which we present in §5. We discuss
some examples of our method in action in §6 and we report our
conclusions and suggest directions for future work in §7.

A previous version of this paper [6] focused on plane curves
only. Here, we focus on curves on surfaces. We also discuss
plane curves for motivation, simplicity of exposition, and com-
pleteness. In addition to the material on surfaces presented
in §4.4 and §6, we include a performance comparison of the
strategies for handling triangles with AA in §4.3 and an ex-
panded and detailed explanation of how our method works in §5.

2. Related work

Dobkin et al. [7] described in detail a continuation method
for polygonal approximation of implicit curves in regular trian-
gular grids generated by reflections. Since the grid is regular,
their approximation is not adaptive. The selection of the grid
resolution is left to the user. Persiano et al. [8] presented a gen-
eral scheme for adaptive triangulation refinement which they

Preprint submitted to Computers & Graphics (second revised version) February 21, 2014

(a) Input mesh (b) Adaptive mesh

Fig. 1: Our method in action for the knot curve given implicitly by y2(3+ 2y)− (x2− 1)2 = 0 on an unstructured triangle mesh: (a) input coarse mesh and (b)
adaptively refined mesh and polygonal approximation (green) computed by our method.

applied to the polygonal approximation of implicit curves in
triangular grids. These two methods work well for fine grids but
they cannot claim robustness since they rely on point sampling.

Suffern and Fackerell [9] were probably the first to apply
interval methods for plotting implicit curves adaptively using
quadtrees. Mitchell [10] revisited their work and helped to
spread the word on interval methods for computer graphics.

Snyder [11, 12] described a complete modeling system based
on interval methods which included an adaptive algorithm for
approximating implicit curves. His algorithm uses interval es-
timates for the gradient of the function defining the curve to
incorporate global parametrizability in the subdivision criteria.
The leaf cells in the resulting decomposition can vary in size,
even though the approximation is not explicitly adapted to the
curvature of the curve.

Lopes et al. [5] presented an interval method for polygonal
approximation of implicit curves that uses interval estimates of
the gradient for finding an approximation that is both spatially
and geometrically adaptive, in the sense that it uses larger cells
when the curve is approximately flat. Their method is in the
same spirit as ours, except that it works only with rectangular
quadtrees on the plane and relies on automatic differentiation,
which can be avoided by using AA, as we shall show.

Comba and Stolfi [13] introduced AA and showed an exam-
ple of how it can perform better than classical interval arithmetic
when plotting implicit curves. Further examples were given
by Figueiredo and Stolfi [14]. Martin et al. [15] compared the
performance of several interval methods for plotting algebraic

curves using quadtrees, including methods based on AA and
variants. None of these papers exploited the additional geometric
information provided by AA. This has been done for ray tracing
implicit surfaces by Cusatis et al. [16] and for approximating
parametric curves by Figueiredo et al. [17], but as far as we
know has not yet been done for polygonal approximation of
implicit curves, either on the plane or on surfaces.

Bühler [18, 19] proposed a cell pruning method based on a
linearization of implicit objects derived from AA. In addition to
reducing the number of enclosure cells, her method provides a
tight piecewise linear covering adapted to the topology of the
object instead of a covering using overestimated axis-aligned
bounding boxes. This approach is in the same spirit as our own,
but it uses rectangular cells only and can generate approxima-
tions with cracks across cells.

3. Affine arithmetic

We now briefly review the main concepts of AA. For details,
see [20] and [4].

Like classical interval arithmetic [2, 3], affine arithmetic is
an extended arithmetic: it represents real quantities with more
than just one floating-point number; it provides replacements
for the standard arithmetic operations and elementary functions
that work on such extended representations; and it is able to
extract information on the range of computed quantities from
the extended representation. The computations in both interval

2

and affine arithmetic take into account all rounding errors in
floating-point arithmetic and so provide reliable results.

Interval arithmetic uses two floating-point numbers to repre-
sents intervals containing quantities. Affine arithmetic represents
a quantity q with an affine form:

q̂ = q0 +q1ε1 +q2ε2 + · · ·+qnεn

where qi are real numbers and εi are noise symbols which vary
in the interval [−1,1] and represent independent sources of un-
certainty. From this representation, one deduces an interval
estimate for the value of q:

q ∈ [q̂] := [q0−δ ,q0 +δ]

where δ = |q1|+ · · ·+ |qn|. Thus, AA generalizes interval arith-
metic. More importantly, by design affine forms can share noise
symbols and thus may be not completely independent. The ex-
plicit representation of first-order partial correlations and the
quadratic convergence of estimates are the main features of AA
that are absent in classical interval arithmetic. Despite the in-
creased computational cost in AA, these features yield more
efficient methods in several cases, especially when the geometry
of AA approximations is exploited [16, 17], as in this paper.

There are simple formulas for operating with affine forms.
The formulas for affine operations (addition, subtraction, scalar
multiplication, and scalar translation) are immediate, because
affine forms represent these operations exactly (except for round-
ing errors in floating-point arithmetic). The formulas for non-
affine operations (multiplication, integer powers, square root,
and other elementary functions) rely on a good affine approxima-
tion with an explicit error term, as explained in detail elsewhere
[20, 4]. By combining the formulas for these basic operations,
one can evaluate any complicated algebraic or transcendental
formula on affine forms. As in other extended arithmetics, this is
especially convenient to implement automatically using operator
overloading, which is readily available in several programming
languages. We use libaffa, a C++ library for AA [21].

4. Bounding implicit curves with strips

Affine forms have a rich geometry, which our method tries
to exploit. We now describe how to use AA to compute a strip
of parallel lines that contains the piece of the plane curve given
implicitly by f (x,y) = 0 in axis-aligned rectangles, arbitrary par-
allelograms, and triangles. We then explain how to extend this
computation to handle a curve given implicitly by f (x,y,z) = 0
on a triangulated surface. This is the basis of our adaptive ap-
proximation method, which we present in §5.

4.1. On rectangles
In the simplest setting, we want to evaluate f (x,y) using

AA on a rectangular domain on the plane, Ω = [a,b]× [c,d].
Assuming that f is given by a mathematical expression, we just
need to represent (x,y) ∈Ω with appropriate affine forms:

x̂ = x0 + x1ε1, x0 =
a+b

2
, x1 =

b−a
2

ŷ = y0 + y2ε2, y0 =
c+d

2
, y2 =

d− c
2

Note that x and y use different noise symbols because they vary
independently in Ω.

The result of evaluating f on Ω using AA is an affine form

f̂ = f0 + f1ε1 + f2ε2 + · · ·+ fnεn

where ε3, . . ., εn are noise symbols created during the evalua-
tion of non-affine operations that occur in the expression of f ,
including rounding in floating-point arithmetic. A first-order
approximation to the value of f on Ω is given by the princi-
pal terms f0 + f1ε1 + f2ε2, which directly relate f (x,y) with
the input variables x and y. The other terms are second-order
terms and can be condensed into a single term f3ε3, where
f3 = | f3|+ · · ·+ | fn|. (For simplicity, we have reused ε3 and f3
here.) In summary, the value of f on Ω is represented by an
affine form with three noise symbols:

f̂ = f0 + f1ε1 + f2ε2 + f3ε3

In particular, for each (x,y) ∈ Ω, the value f (x,y) lies in the
interval [f̂] centered at f0 with radius | f1|+ | f2|+ | f3|. If this in-
terval does not contain 0, then the curve does not pass through Ω.
This test, called an absence oracle by Lopes et al. [5], is the basis
for all previous interval methods of approximating an implicit
curve using a rectangular quadtree.

The basis of our approach is that useful geometric bounds
can be extracted from the affine form f̂ . Indeed, the affine
approximation f̂ = f0+ f1ε1+ f2ε2+ f3ε3 tells us that the graph
of z = f (x,y) over Ω is sandwiched between the two parallel
planes given by

z = f0 + f1ε1 + f2ε2 ± f3

These equations can be written in Cartesian coordinates as

z = f0 +
f1

x1
(x− x0)+

f2

y2
(y− y0) ± f3

by writing

ε1 =
x− x0

x1
, ε2 =

y− y0

y2

The region where f is zero in Ω is thus contained in the strip
defined by the two parallel lines

0 = f0 +
f1

x1
(x− x0)+

f2

y2
(y− y0) ± f3

whose width is

w =
2 f3√(

f1
x1

)2
+
(

f2
y2

)2

When w is small, the curve f (x,y) = 0 varies little inside Ω. Our
method uses this test as a subdivision criterion for an adaptive
exploration of Ω: keep subdividing until w is small. The method
is discussed in detail in §5.

3

Fig. 2: Approximating implicit curves on a rectangular quadtree using the
method of Lopes et al. [5] (top) and our method (bottom) for the quar-
tic curve from Taubin’s paper [22]: 0.004 + 0.110x− 0.177y− 0.174x2 +
0.224xy − 0.303y2 − 0.168x3 + 0.327x2y − 0.087xy2 − 0.013y3 + 0.235x4 −
0.667x3y + 0.745x2y2 − 0.029xy3 + 0.072y4 = 0. The region of interest is
Ω = [−2.19,2.19]2. The quadtrees go to maximum depth 9. The top decompo-
sition visited 6937 cells, has 341 leaves, and took 97 milliseconds. The bottom
decomposition visited 1697 cells, has 221 leaves, and took 43 milliseconds. Our
method is faster and generates a more efficient decomposition.

Fig. 2 shows an example of our method in action using
a rectangular quadtree to locate and approximate an implicit
curve. Note how it compares favorably with the method of Lopes
et al. [5] without computing derivatives because AA provides
second-order approximations and handles first-order correla-
tions, thus yielding tighter interval estimates for long arithmetic
expressions. Our previous paper [6] contains some other results
on this comparison.

4.2. On parallelograms

We have seen how to represent an axis-aligned rectangle
in AA: it is the joint range of two mutually independent affine
forms on two noise symbols. In general, the joint range of
m affine forms on n noise symbols is the image of the hypercube
[−1,1]n under an affine transformation Rn → Rm. Therefore,
the objects that AA represents naturally are zonotopes: centrally
symmetric convex polytopes, or equivalently, Minkowski sums
of line segments. In particular, with two noise symbols AA can
represent an arbitrary parallelogram in the plane. Indeed, the
two affine forms

x̂ = x0 + x1ε1 + x2ε2, ŷ = y0 + y1ε1 + y2ε2

represent the parallelogram centered at (x0,y0) with sides par-
allel to the vectors v1 = (x1,y1) and v2 = (x2,y2) of twice their
length. Note that now x and y are not completely independent,
unless x2 = 0 and y1 = 0 — in this case, the parallelogram is a
rectangle with sides parallel to the coordinate axes, as in §4.1.

Having represented a parallelogram P with two affine forms
x̂ and ŷ, we can compute an affine form f̂ representing f in P by
using AA on x̂ and ŷ. From f̂ we can find Cartesian equations
for a strip containing the curve f (x,y) = 0 for (x,y) ∈ P. In the
rectangular case discussed in §4.1, these equations were easy to
find by writing ε1 and ε2 in terms of x and y. We can do exactly
the same thing in the parallelogram case, but now we need to
invert a 2×2 matrix, converting[

x
y

]
=

[
x0
y0

]
+

[
x1 x2
y1 y2

][
ε1
ε2

]
to [

ε1
ε2

]
=

[
x1 x2
y1 y2

]−1 [x− x0
y− y0

]
and proceeding as before. The matrix above is invertible if and
only if the vectors v1 = (x1,y1) and v2 = (x2,y2) are linearly
independently, that is, when the parallelogram is not degenerate.

4.3. On triangles

We wish to evaluate a function f with AA on a triangle, but
triangles are not zonotopes and so cannot be directly represented
in AA. The easiest solution is to enclose the triangle in a paral-
lelogram and then evaluate AA there, as explained in §4.2. As
illustrated in Fig. 3, there are a few ways to do this enclosure:
reflect the triangle with respect to one side, find the smallest rect-
angle containing the triangle, or use the triangle’s axis-aligned
bounding box.

4

(a) (b) (c) (d) (e)

Fig. 4: Polygonal approximation of the parabola y = 3x2 using our method. (a) Input triangle. (b), (c), and (d) evaluating f (x,y) = 3x2− y with AA in each
parallelogram and its associated strips (gray regions). (e) computing the polygonal approximation (green) using the sub-triangles of the input triangle.

Fig. 3: Enclosing a triangle in a parallelogram.

Strictly speaking, this solution is wrong because we would
be evaluating f outside its domain. In practice, it works well for
functions defined on the whole plane or at least on a neighbor-
hood of the region of interest. This solution uses a less precise
absence oracle due to increased interval overestimation. As a
consequence, the adaptive method discussed in §5 will probably
subdivide more cells and compute more interval estimates than
necessary.

One possibility for representing a triangle with vertices ABC
without enlarging it is to use a bilinear parametrization: (u,v) in
the unit square goes to (1−u)A+u(1−v)B+uvC in the triangle.
However, even if we write this as A+u(B−A)+uv(C−B) to
minimize repetitions, it is still a quadratic map and will induce
even higher interval overestimation than the one due to enlarging
the triangle to a parallelogram. Moreover, the strip computed by
AA lies in the uv parametric space, not in xyz Cartesian space,
and so is not directly useful for our method.

The solution we have adopted for representing a triangle
without enlarging it is to decompose the triangle into three over-
lapping parallelograms by joining the midpoints of the edges,
as in Fig. 5. We can then evaluate f with AA on each of these
parallelograms, as in §4.2. If the curve lies within a thin strip
in each of these parallelograms, then the curve lies within a
thin “tube” inside the triangle, even if the curve does not lie
within a single thin strip in the triangle. Fig. 4 illustrates this
approximation which is the basis of our method, explained in §5.

Fig. 5: Decomposing a triangle into parallelograms.

This strategy does not enlarge the triangle and so avoids eval-
uating f outside its domain. Moreover, since the parallelograms

are parametrized linearly, there is no increased overestimation.
While this strategy requires up to three AA evaluations of the
function for each triangle that is visited, it can yield a better
polygonal approximation of the implicit curve inside the triangle
with three segments instead of just one, as shown in Fig. 4.

Table 1 and Fig. 6 show a comparison of these four strate-
gies for handling triangles with parallelograms for the curve
in Fig. 2. We use midpoint subdivision for refinement in our
adaptive method (see §5 for details). As expected, the strat-
egy that decomposes triangles into parallelograms visits fewer
cells, produces a smaller mesh and a better polygonal approxi-
mation, but takes a bit longer. Producing smaller final meshes is
a desirable feature in modeling applications. If necessary, appli-
cations using our method can choose one of the other strategies
or even mix them dynamically to balance the trade-offs between
precision and cost.

strategy time output visited leaves AA seg
decomposition 33 1445 1805 250 4604 502

reflection 25 2909 3878 298 3878 298
smallest rectangle 28 3392 4522 318 4522 318

bounding box 25 2882 3842 316 3842 316

Table 1: Performance of different strategies for handling triangles with parallelo-
grams to approximate the curve in Fig. 2: times in milliseconds and numbers of
triangles output in the final mesh, visited triangles, leaf triangles, AA evaluations,
and segments in the polygonal approximation.

4.4. On triangulated surfaces

An implicit curve on a triangulated surface is given by an
equation f (x,y,z) = 0. It is thus the intersection of an implicit
surface with the triangulated surface. We want to approximate
the implicit curve on the triangulated surface without first com-
puting a polygonal approximation for the implicit surface and
then intersecting it with the triangulated surface — a wasteful,
costly, and potentially numerically delicate task.

To extend the method in §4.3 to handle triangulated surfaces,
it suffices to extend the method in §4.2 to handle parallelograms
in 3D space. We represent such a parallelogram P with AA
using three affine forms in two noise symbols:

x̂ = x0 +x1ε1 +x2ε2, ŷ = y0 +y1ε1 +y2ε2, ẑ = z0 + z1ε1 + z2ε2

5

(a) decomposition (b) reflection (c) smallest rectangle (d) bounding box

Fig. 6: Effect of different strategies for handling triangles with parallelograms to approximate the curve of Fig. 2.

As before, evaluating f (x,y,z) using AA on P yields that the
implicit curve f (x,y,z) = 0 in P lies sandwiched between the
two parallel planes given by

0 = f0 + f1ε1 + f2ε2 ± f3

Again, we translate these equations into Cartesian coordinates
by writing ε1 and ε2 in terms of x, y, z. More precisely, from x

y
z

=

 x0
y0
z0

+
 x1 x2

y1 y2
z1 z2

[ε1
ε2

]
we get [

ε1
ε2

]
=

 x1 x2
y1 y2
z1 z2

+ x− x0
y− y0
z− z0

where B+ = (B>B)−1B> is the pseudoinverse of a matrix B.
This expression for the pseudoinverse is valid exactly when the
matrix has full rank, that is, when its two columns are linearly
independent. In geometric terms, this happens exactly when the
parallelogram P is not degenerate.

5. Our adaptive method

Once we know how to decide whether an implicit curve can
be well approximated by a strip or a series of strips inside a cell
(be it a rectangle, a parallelogram, or a triangle), we can use
this test as a criterion for adaptive subdivision: if the curve is
well approximated inside the cell, then we stop the subdivision;
otherwise, we decompose the current cell into a number of
subcells and recursively explore each subcell.

Our method is summarized in Fig. 7, in two versions: one
for parallelograms, including rectangles, and one for triangles.
The method starts with procedure Adaptive which explores each
cell in an initial mesh decomposition of the region of interest or
surface. For rectangular quadtrees in the plane, the initial mesh
typically contains a single cell. For triangular decompositions of
rectangular regions in the plane, the initial mesh typically con-
tains two cells dividing the rectangle diagonally. Nevertheless,
the method works for arbitrary triangulated regions and surfaces.

The core of the method is the Explore procedure which
recursively tests whether the curve crosses the cell, subdividing

procedure Adaptive()
for all cells C in the base mesh do

Explore(C)
end

procedure Explore(C) (parallelograms)
f̂ ← f (C) with AA
if 0 ∈ [f̂] then

w← width of f̂ in C
if w≤ ε then

Approximate(C)
else

divide C into subcells Ci
for each i, Explore(Ci)

end

procedure Explore(C) (triangles)
P1,P2,P3← parallelograms of C
f̂i← f (Pi) with AA
if 0 ∈ [f̂i] for some i then

wi← width of f̂ in Pi
if wi ≤ ε for all i then

Approximate(C)
else

divide C into subcells Ci
for each i, Explore(Ci)

end

Fig. 7: Our adaptive method summarized.

the cell as needed. The recursion stops when the curve does
not cross the cell (as proved by the interval estimate [f̂] not
containing zero), when the curve lies within a thin tube inside
the cell (of width less than a user-supplied tolerance ε), or when
a maximum recursion depth has been reached, for safety.

In the case of triangles, Explore is rearranged to test each
parallelogram in sequence, avoiding further tests as soon as the
curve is not thin inside a parallelogram. The triangle is then
immediately subdivided and explored recursively. This change
can avoid many unnecessary AA evaluations.

When the curve lies in a thin tube, we perform the Approxi-
mate procedure, in which we compute a polygonal approxima-

6

Fig. 8: Linear interpolation (left) produces cracks in the approximation, which
are avoided by using the bisection method to full precision (right).

tion for the curve by finding the points where the curve crosses
the boundary of the cell. In the case of triangular cells, we find
the points where the curve crosses the boundary of each subcell
of the midpoint subdivision (regardless of the refinement scheme
used by the triangulation), since these are the edges of the par-
allelograms used for testing the cell using the decomposition
strategy (Fig. 4). As in the method of Lopes et al. [5], we use
the classic bisection method to full floating-point precision on
each edge for finding these crossings to ensure continuity of the
polygonal approximation without cracks (Fig. 8).

There are several possibilities for the subdivision step in
Explore. We get a quadtree decomposition subdividing the cell
into four similar subcells by joining the midpoints of the edges
of the cell. This midpoint subdivision is the easiest subdivision
method and can be used for both rectangles and triangles.

Triangulations can offer other subdivision methods for mesh
refinement. Our method does not care what subdivision method
is used and can use whatever subdivision method is offered by
the triangulation or application. In particular, our method works
seamlessly with dyadic splits, 4-8 meshes [23],

√
3-subdivision

[24], and other subdivision schemes, and with adaptive finite-
element meshes, whose subdivision depends on the results of
numerical simulations.

If the triangulation does not offer its own subdivision method,
then we use midpoint subdivision, which yields a triangular
quadtree inside each triangle in the initial mesh. In this case, we
change Explore to skip subtriangles contained in parallelograms
that have been shown not to contain the curve. This helps to
reduce the number of unnecessary subdivisions and redundant
interval estimates, as Table 1 and Fig. 6 show. This change
makes the strategy that decomposes triangles into parallelograms
competitive with the other strategies.

6. Results

Fig. 11 shows that our method is able to approximate an
implicit curve on an unordered collection of triangles (i.e., a
triangle soup) as well as on a triangle mesh with topological
information, i.e., a triangle mesh with explicit connectivity be-
tween the triangles. We used midpoint refinement in the first
example and 4-8 mesh refinement in the second one. As in the
other pictures, the shading reflects the refinement level.

Fig. 12 shows that our method is able to approximate im-
plicit curves on both convex and non-convex 4-8 meshes. Note
how our method tracks the main features of the curves, such as
singularities and multiple components. Fig. 13 shows that our
method approximates nicely both algebraic and non-algebraic
curves on complex meshes for regions of arbitrary genus.

Fig. 14 illustrates the effect of the geometric criteria in our
method. This strategy produces well-adapted curves controlled
by the tolerance ε (see Table 3), the only user-supplied parameter
of our method. In order to demonstrate the efficiency of the
geometric criteria, the curvature is computed analytically and
color coded from low (cyan) to high (magenta) absolute values
of the curvature. Fig. 14 also shows how the mesh concentrates
on high-curvature regions as we decrease ε .

Fig. 15 shows that our method adapts to the topology of the
curve using a small set of triangles. This adaptability cannot
be accomplished directly by the marching triangles algorithm.
Indeed, the correct topology is reproduced by the marching
triangles algorithm only after substantially refining the mesh,
which significantly increases the number of triangles.

Fig. 16 shows that our method is able to approximate implicit
curves on a wide variety of triangulated surfaces, from closed
surfaces with or without boundary to surfaces with complex
topology. Although finding an implicit curve on a triangulated
surface S is equivalent to intersecting an implicit surface with S,
our method does not need to triangulate the implicit surface
and then intersect that mesh with S, a costly and potentially
numerically delicate task.

The nodal domains (zero sets) of the real spherical harmon-
ics Y k

4 of degree 4 and order k on the unit sphere (see Table 2) are
gracefully approximated using our method, as shown in Fig. 17.
The heavy refinement seen in the figure is due to the presence of
self-intersections in the curves.

Fig. 18 shows the intersection of a cylinder given implicitly
with a mesh of the unit sphere. The topology of the intersection
curve varies with the position of the cylinder. Fig. 19 shows the
intersection of a hyperboloid given implicitly with a Klein bottle
surface given parametrically. For comparison, the intersection
is found both on a mesh of the surface and directly on the para-
metric domain. These two examples illustrate how our method
would work for finding both intersection curves in space and
trimming curves in parametric space in a hybrid CSG modeling
system that mixed implicit surfaces, parametric surfaces, and
triangle meshes.

All results were generated on a 2.4 GHz Intel Core i7 with
8GB of RAM. Table 3 shows performance data, timings, and
statistics for these computations.

7. Conclusion

Like the method of Lopes et al. [5], our method computes
polygonal approximations of implicit curves that are both spa-
tially and geometrically adaptive. Unlike their method, however,
our method does not need to compute derivatives because AA
provides second-order approximations. Moreover, our method
works for both rectangular and triangular decompositions, struc-
tured and unstructured, on the plane or on surfaces. It can use any

7

Fig. curve mesh depth ε
triangles timein out

1 knot Lauranna 4 1×10−4 1852 12604 49
11.b circle Africa 3 1×10−3 193 922 9
11.c circle Africa 5 1×10−3 193 1106 9
12.a bicorn octagon 5 5×10−3 126 1168 13
12.b pear beetle 4 1×10−2 940 1771 15
12.c capricorn tree 22 1×10−3 1015 11678 93
13.a heart gear 3 3×10−3 1424 3289 23
13.b clown K7 4 5×10−3 1006 2134 19
13.c irrational eight 4 1×10−3 1032 3897 48
14.a cubic square 6 8×10−1 4 67 9
14.b cubic square 9 4×10−1 4 184 22
14.c cubic square 11 1×10−1 4 621 64
15 Pisces circle 6 5×10−3 101 2382 66
16.a saddle horse 4 1×10−4 6484 9184 55
16.b two circles mask 3 1×10−4 8474 10524 53
16.c cubic teapot 4 1×10−4 1962 20364 62
17.b Y 0

4 = 0 sphere 4 1×10−4 1536 7386 62
17.c i

√
2

2

(
Y 1

4 +Y−1
4

)
= 0 sphere 4 1×10−4 1536 8664 62

17.d
√

2
2

(
Y 2

4 +Y−2
4

)
= 0 sphere 6 1×10−4 1536 19624 135

17.e i
√

2
2

(
Y 3

4 +Y−3
4

)
= 0 sphere 6 1×10−4 1536 18662 125

17.f
√

2
2

(
Y 4

4 +Y−4
4

)
= 0 sphere 7 1×10−4 1536 26854 215

18.a cylinder sphere 5 1×10−4 1536 3338 17
18.b cylinder sphere 9 1×10−4 1536 11800 70
18.c cylinder sphere 5 1×10−4 1536 4986 27
19.a hyperboloid Klein bottle 3 1×10−4 800 4463 29
19.b hyperboloid Klein bottle 10 1×10−4 8 4890 37

Table 3: Performance and statistics for our method (times in milliseconds).

spherical harmonic Cartesian version

Y 0
4

3
16

√
1
π
(35z4−30z2 +3)

i
√

2
2

(
Y−1

4 +Y 1
4
) 3

4

√
5

2π
yz(7z2−3)

√
2

2

(
Y−2

4 +Y 2
4
) 3

8

√
5
π
(x2− y2)(7z2−1)

i
√

2
2

(
Y−3

4 +Y 3
4
) 3

4

√
35
2π

yz(3x2− y2)
√

2
2

(
Y−4

4 +Y 4
4
) 3

16

√
35
π
(x4−6x2y2 + y4)

Table 2: Real spherical harmonics of degree 4 on the unit sphere.

refinement scheme that the decomposition offers. Otherwise, it
provides its own refinement scheme using midpoint subdivision,
which is exploited to reduce costs. Our method can also cater
for different cost models by using or mixing different strategies
for handling triangles with parallelograms.

Limitations. Our method requires that the function defining the
curve to be given as an explicit mathematical expression or as
an algorithm. This limitation is shared by all interval methods.

The results produced by our method may depend on the qual-
ity of the initial decomposition and its subsequent refinements.
Ideally, the mesh should provide a refinement scheme that avoids

bad-quality triangles.
Finally, like most methods for approximating implicit ob-

jects, our method does not attempt to handle singularities. Nev-
ertheless, as shown in Fig. 9, it can detect singularities in the
sense that it can flag cells that have reached the maximum depth
without meeting any other stopping criteria. The curve most
probably cuts these cells but is not flat there, thus indicating a
singularity.

Future work. A natural direction for future work is to extend our
technique for approximating implicit surfaces in hexahedral and
tetrahedral spatial decompositions, another important problem
in geometric modeling with several applications [1, 25] and for
which there are interval methods [26]. In particular, we would
like to apply our method for surface reconstruction from point
clouds using Multi-level Partition of Unity (MPU) Implicits [27].

Implicit curves on triangulated surfaces are potentially use-
ful for modeling tasks such as boundary evaluation and Boolean
operations in hybrid CSG systems that mix implicit and para-
metric objects and meshes. Such applications are beyond the
scope of this paper and are left as suggestion for future work.

Another direction for future work is to compute the distance
field of an implicit curve by adapting the algorithm described
in [17] for parametric curves.

8

Fig. 9: Our method detects the non-manifold region (red) in Tschirnhausen cubic
curve y2 = x3 + 3x2 on trapezoid, even when the singularity is not recovered
(top right zoom).

Our method can be applied to parallelogram decompositions
of the plane, including the interesting Penrose tiling of Fig. 10.
Penrose tilings with parallelograms admit a global refinement
scheme but not a local one, and so cannot be used with our
adaptive method. Except for the midpoint subdivision scheme,
we do not know any method for decomposing a parallelogram
into smaller parallelograms. It would be interesting to find one. 10/10/13 2:41 PM

Page 1 of 1file:///Users/lhf/Desktop/Work/papers/CAG2013/penrose/w.svg

Fig. 10: Penrose tiling with parallelograms (source: Wikipedia).

Acknowledgments. A previous version of this paper was presented at
SIBGRAPI 2012 [6]. The authors are partially supported by CNPq and
FAPESP. This work was done in the Visgraf laboratory at IMPA, which
is sponsored by CNPq, FAPERJ, FINEP, and IBM Brasil.

References

[1] Patrikalakis NM, Maekawa T. Shape interrogation for computer aided
design and manufacturing. Springer-Verlag; 2002.

[2] Moore RE. Interval Analysis. Prentice-Hall; 1966.
[3] Moore RE, Kearfott RB, Cloud MJ. Introduction to Interval Analysis.

SIAM; 2009.
[4] de Figueiredo LH, Stolfi J. Affine arithmetic: Concepts and applications.

Numerical Algorithms 2004;37(1):147–58.
[5] Lopes H, Oliveira JB, de Figueiredo LH. Robust adaptive polygonal

approximation of implicit curves. Computers & Graphics 2002;26(6):841–
52.

[6] Paiva A, de Carvalho Nascimento F, de Figueiredo LH, Stolfi J. Ap-
proximating implicit curves on triangulations with affine arithmetic. In:
Proceedings of SIBGRAPI 2012. IEEE Press; 2012, p. 94–101.

[7] Dobkin DP, Levy SVF, Thurston WP, Wilks AR. Contour tracing by piece-
wise linear approximations. ACM Transactions on Graphics 1990;9(4):389–
423.

[8] Persiano RCM, Comba JLD, Barbalho V. An adaptive triangulation
refinement scheme and construction. In: Proceedings of SIBGRAPI’93.
1993, p. 259–66.

[9] Suffern KG, Fackerell ED. Interval methods in computer graphics. Com-
puters & Graphics 1991;15(3):331–40.

[10] Mitchell DP. Three applications of interval analysis in computer graphics.
In: Frontiers in Rendering course notes. SIGGRAPH’91; 1991, p. 14–1–
14–13.

[11] Snyder JM. Interval analysis for computer graphics. Computer Graphics
1992;26(2):121–30. (SIGGRAPH’92 Proceedings).

[12] Snyder JM. Generative Modeling for Computer Graphics and CAD. Aca-
demic Press; 1992.

[13] Comba JLD, Stolfi J. Affine arithmetic and its applications to computer
graphics. In: Proceedings of SIBGRAPI’93. 1993, p. 9–18.

[14] de Figueiredo LH, Stolfi J. Adaptive enumeration of implicit surfaces with
affine arithmetic. Computer Graphics Forum 1996;15(5):287–96.

[15] Martin R, Shou H, Voiculescu I, Bowyer A, Wang G. Comparison of
interval methods for plotting algebraic curves. Computer Aided Geometric
Design 2002;19(7):553–87.

[16] de Cusatis Jr. A, de Figueiredo LH, Gattass M. Interval methods for
ray casting implicit surfaces with affine arithmetic. In: Proceedings of
SIBGRAPI’99. IEEE Press; 1999, p. 65–71.

[17] de Figueiredo LH, Stolfi J, Velho L. Approximating parametric curves
with strip trees using affine arithmetic. Computer Graphics Forum
2003;22(2):171–9.

[18] Bühler K. Fast and reliable plotting of implicit curves. In: Uncertainty
Geometric Computations. Kluwer Academic; 2002, p. 15–28.

[19] Bühler K. Implicit linear interval estimations. In: Proceedings of SCCG
’02. ACM; 2002, p. 123–32.

[20] Stolfi J, de Figueiredo LH. Self-Validated Numerical Methods and Appli-
cations. 21st Brazilian Mathematics Colloquium, IMPA; 1997.

[21] Gay O, Coeurjolly D, Hurstand N. Libaffa, C++ affine arithmetic library.
2006. http://www.nongnu.org/libaffa/.

[22] Taubin G. Rasterizing algebraic curves and surfaces. IEEE Computer
Graphics and Applications 1994;14(2):14–23.

[23] Velho L, Zorin D. 4-8 subdivision. Computer-Aided Geometric Design
2001;18(5):397–427.

[24] Kobbelt L.
√

3-subdivision. In: Proceedings of SIGGRAPH ’00. ACM;
2000, p. 103–12.

[25] Gomes A, Voiculescu I, Jorge J, Wyvill B, Galbraith C. Implicit Curves
and Surfaces: Mathematics, Data Structures and Algorithms. Springer;
2009.

[26] Paiva A, Lopes H, Lewiner T, de Figueiredo LH. Robust adaptive meshes
for implicit surfaces. In: Proceedings of SIBGRAPI 2006. IEEE Press;
2006, p. 205–12.

[27] Ohtake Y, Belyaev A, Alexa M, Turk G, Seidel HP. Multi-level partition
of unity implicits. ACM Transactions on Graphics 2003;22(3):463–70.
(SIGGRAPH’03 Proceedings).

9

http://www.nongnu.org/libaffa/

(a) Input mesh (b) Triangle soup (c) Triangle mesh with topology

Fig. 11: Approximating the circle (green curve) x2 + y2 = 1 on adaptive meshes: (a) input coarse mesh, (b) using midpoint refinement, (c) using 4-8 mesh refinement.

(a) (b) (c)

Fig. 12: Approximating implicit curves (green) on adaptive triangle meshes using 4-8 mesh refinement; input coarse mesh (top) and refined mesh (bottom): (a) bicorn
curve y2(0.752− x2) = (x2 +1.5y−0.752)2 on octagon model, (b) pear curve 4y4− (x+1)3(1− x) = 0 on beetle model, (c) capricornoid curve given implicitly by
4x2(x2 + y2)− (2y− x2− y2)2 = 0 on tree model.

10

(a) (b) (c)

Fig. 13: Approximating implicit curves on complex meshes; input coarse mesh (top) and adaptive mesh (bottom): (a) heart curve (x2 +y2−1)3 = x2y3 on gear model,
(b) clown smile (y− x2 +1)4 +(x2 + y2)4 = 1 on K7 model, (c) transcendental curve given implicitly by (xy+ cos(x+ y))(xy+ sin(x+ y)) = 0 on eight model.

(a) ε = 0.8 (b) ε = 0.4 (c) ε = 0.1

Fig. 14: The effect of the geometric criteria on a cubic curve y2− x3 + x = 0.5 in a triangular quadtree. Our method tracks regions with high curvature (magenta)
when ε decreases.

11

Fig. 15: In order to reproduce the Pisces logo (http://www.geom.uiuc.edu/~fjw/pisces/docs/models/Pisces.html), the marching triangles algorithm
alone generates a curve with wrong topology on coarse mesh with 101 triangles (left) and it only provides a satisfactory result on a fine mesh with 12928 triangles
(middle). Our method adaptively tracks the geometry and topology of the curve on the mesh with just 2382 triangles.

(a) (b) (c)

Fig. 16: Approximating implicit curves on surfaces; input coarse mesh (top) and refined mesh using midpoint mesh refinement (bottom): (a) saddle 3x2−48y2 = 8z
on horse model, (b) two circles curve xy2(1−

√
xy2) = 0.04 on mask model, (c) cubic curve (xy−2)(x2 + y2−1) = 0 on teapot model.

12

 http://www.geom.uiuc.edu/~fjw/pisces/docs/models/Pisces.html

(a) Input mesh (b) Y 0
4 = 0 (c) i

√
2

2

(
Y 1

4 +Y−1
4
)
= 0

(d)
√

2
2

(
Y 2

4 +Y−2
4
)
= 0 (e) i

√
2

2

(
Y 3

4 +Y−3
4
)
= 0 (f)

√
2

2

(
Y 4

4 +Y−4
4
)
= 0

Fig. 17: Approximating the nodal domains (green lines) of the real spherical harmonics of degree 4 on the unit sphere.

(a) a = 0.3 (b) a = 0.5 (c) a = 0.7

Fig. 18: Approximating implicit curves from the intersection of the cylinder given implicitly by (x−a)2 + y2 = a2 on the unit sphere.

13

(a)

(b)

Fig. 19: Approximating implicit curves (green) from the intersection of the hyperboloid given implicitly by x2− y2− z2 = 1 on Klein bottle given parametrically by
x(u,v) = (a+ cos(u)sin(v)− sin(u)sin(2v))cos(u), y(u,v) = (a+ cos(u)sin(v)− sin(u)sin(2v))sin(u), z(u,v) = sin(u)sin(v)+ cos(u)sin(2v), where a = 2.7 and
(u,v) ∈ [0,2π)× [0,2π): (a) curves computed on a mesh of the surface and (b) directly from the parametric domain.

14

	1 Introduction
	2 Related work
	3 Affine arithmetic
	4 Bounding implicit curves with strips
	4.1 On rectangles
	4.2 On parallelograms
	4.3 On triangles
	4.4 On triangulated surfaces

	5 Our adaptive method
	6 Results
	7 Conclusion

